Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biochimie ; 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2272294

ABSTRACT

SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is the key enzyme required for viral replication and mRNA synthesis. RdRp is one of the most conserved viral proteins and a promising target for antiviral drugs and inhibitors. At the same time, analysis of public databases reveals multiple variants of SARS-CoV-2 genomes with substitutions in the catalytic RdRp subunit nsp12. Structural mapping of these mutations suggests that some of them may affect the interactions of nsp12 with its cofactors nsp7/nsp8 as well as with RNA substrates. We have obtained several mutations of these types and demonstrated that some of them decrease specific activity of RdRp in vitro, possibly by changing RdRp assembly and/or its interactions with RNA. Therefore, natural polymorphisms in RdRp may potentially affect viral replication. Furthermore, we have synthesized a series of polyphenol and diketoacid derivatives based on previously studied inhibitors of hepatitis C virus RdRp and found that several of them can inhibit SARS-CoV-2 RdRp. Tested mutations in RdRp do not have strong effects on the efficiency of inhibition. Further development of more efficient non-nucleoside inhibitors of SARS-CoV-2 RdRp should take into account the existence of multiple polymorphic variants of RdRp.

2.
J Infect Public Health ; 16(4): 501-519, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2238892

ABSTRACT

BACKGROUND AND OBJECTIVE: The current coronavirus disease-2019 (COVID-19) pandemic has triggered a worldwide health and economic crisis. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the disease and completes its life cycle using the RNA-dependent RNA-polymerase (RdRp) enzyme, a prominent target for antivirals. In this study, we have computationally screened ∼690 million compounds from the ZINC20 database and 11,698 small molecule inhibitors from DrugBank to find existing and novel non-nucleoside inhibitors for SARS-CoV-2 RdRp. METHODS: Herein, a combination of the structure-based pharmacophore modeling and hybrid virtual screening methods, including per-residue energy decomposition-based pharmacophore screening, molecular docking, pharmacokinetics, and toxicity evaluation were employed to retrieve novel as well as existing RdRp non-nucleoside inhibitors from large chemical databases. Besides, molecular dynamics simulation and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method were used to investigate the binding stability and calculate the binding free energy of RdRp-inhibitor complexes. RESULTS: Based on docking scores and significant binding interactions with crucial residues (Lys553, Arg557, Lys623, Cys815, and Ser816) in the RNA binding site of RdRp, three existing drugs, ZINC285540154, ZINC98208626, ZINC28467879, and five compounds from ZINC20 (ZINC739681614, ZINC1166211307, ZINC611516532, ZINC1602963057, and ZINC1398350200) were selected, and the conformational stability of RdRp due to their binding was confirmed through molecular dynamics simulation. The free energy calculations revealed these compounds possess strong binding affinities for RdRp. In addition, these novel inhibitors exhibited drug-like features, good absorption, distribution, metabolism, and excretion profile and were found to be non-toxic. CONCLUSION: The compounds identified in the study by multifold computational strategy can be validated in vitro as potential non-nucleoside inhibitors of SARS-CoV-2 RdRp and holds promise for the discovery of novel drugs against COVID-19 in future.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA-Dependent RNA Polymerase , Molecular Docking Simulation , Molecular Dynamics Simulation , Pharmacophore , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , RNA
SELECTION OF CITATIONS
SEARCH DETAIL